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Using electron energy-loss spectroscopy (EELS) and many-electron atomic spectral 

calculations, we examine the O4,5 (5d →  5f ) edge structure of the ground-state α 

phase of Th, U, Np, Pu, Am, and Cm metal. Results show that the dipole-allowed 

transitions are contained within the giant resonance and that the small pre-peak in 

the actinide 5d →  5f transition should not be labeled the O5 peak, but rather the 

ΔS=1 peak. Lastly, we present for the first time the O4,5 EELS spectra for Np, Am, 

and Cm metal. 
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The actinides are of great interest to the physics and chemistry communities due 

to the intriguing and unique physical properties they exhibit as a result of the complicated 

electronic structure of the 5f states. Actinide materials are also rapidly growing in 

importance for energy and industry, particularly given expanding interest in next-

generation nuclear reactors [1]. Yet, despite this rising awareness, there remains a 

discernable lack of knowledge of the fundamental physics and materials science of the 

actinide elements, even for the elemental metals [2]. A better understanding of the 

electronic structure of actinide metals, alloys, and compounds is required for accurate 

modeling of the behavior of these materials. In order to begin providing this, we have 

undertaken a continuing investigation of the 5f states of actinide metals though 

experiment and theory [3-10]. 

To investigate the 5f states of actinide elements using electron energy-loss 

spectroscopy (EELS) or x-ray absorption spectroscopy (XAS), transitions from d core 

states are utilized because they directly probe the f states due to the electric-dipole 

transitions Δl = ±1. The selection rules for these transitions strongly limit the final states 

that can be reached from the initial 5f n state, which means that the spectrum becomes a 

fingerprint of the initial state. These transitions to the 5f states can be excited using either 

a 3d, 4d, or 5d core level, giving different spectral behaviors [2]. Here, we examine the 

O4,5 (5d → 5f ) EELS edge of Th, U, Np, Pu, Am, and Cm metal as acquired in a 300 keV 

field-emission-gun transmission electron microscope.  Experimental O4,5 EELS spectra of 

the ground-state α phase of each metal are presented along with analysis of many-

electron atomic spectral calculations, to discern fundamental aspects of the electronic 

structure of the 5f states. While the Th, U, and Pu spectra have been presented before [4], 
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the Np, Am, and Cm spectra are shown for the first time, extending the known 5d → 5f  

transitions for actinide metals into the middle of the 5f series.  

The O4,5 edges of Th, U, Np, Pu, Am, and Cm metal are shown in Fig. 1, where all 

the edges are normalized to the same peak intensity. It is immediately noticeable that the 

spectra for each of the elemental metals are distinctly different but that they all contain a 

broad edge, often referred to as the giant resonance [11,12]. This edge is preceded by a 

narrow structure in Th, U, and Np, usually referred to as pre-peak. The giant resonance is 

ill-defined for the actinide O4,5 (5d → 5f ) transition because the core 5d spin-orbit 

interaction is smaller than the core-valence electrostatic interactions [13-16]. This 

effectively smears out the transitions, encapsulating both the O4 (5d3/2) and O5 (5d5/2) 

peaks within the giant resonance, and making distinction between them difficult or even 

impossible. The dipole-allowed transitions are contained within the giant resonance, 

whereas the pre-peak is a result of the finite spin-orbit interaction [8, 13]. 

Multiplet theory can be used to calculate core-level spectra for EELS and XAS of 

the M4,5, N4,5, and O4,5 edges given by the transitions f n → d9f n+1. These calculations are 

performed in the same way as for the rare earths M4,5 and N4,5 absorption edges [17,18], 

only the parameters are different. Contrary to band-structure calculations, the multiplet 

structure is calculated in intermediate coupling, which treats spin-orbit, Coulomb, and 

exchange interactions on equal footing [19]. The calculated actinide O4,5 spectra in Fig. 2 

are convoluted using a Fano line shape broadening of Γ = 2 eV for the giant resonance 

and a Lorentzian line shape of Γ = 0.5 eV for the pre-peak structure, where we assume 

the cross-over between these two regions to be at a relative excitation energy of 5 eV. 

Calculated actinide O4,5 absorption spectra for the ground state configurations f 0 to f 9 
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reproduce the general trends in the data very well. First, the pre-peaks in the Th and U 

O4,5 EELS edge are produced in agreement with the experimental EELS [4,5] and XAS 

[20] spectra.  Second, the width of the calculated O4,5 edge reduces by about half when 

going from n = 5 to 6, which is exactly what we observe between Pu and Am in the O4,5 

EELS in Fig. 1.  

To better understand the actinide O4,5 edges, it is instructive to consider the shape 

of the 4f rare earth N4,5 (4d) edges [21-23] and the 3d transition metal M2,3 (3p) edges 

[24], which also exhibit a giant resonance similar to the actinide O4,5 edge. In all three of 

these cases, the core-valence electrostatic interactions dominate the core spin-orbit 

interaction. The 4f metals show a pre-peak structure that is similar to the light actinides 

and is largely insensitive to the local environment [21-23], meaning the pre-peak 

structure changes little with bonding environment. The 3d metals show a pre-peak 

structure that is strongly dependent on the crystal field and hybridization [24]. Since the 

5f localization is between those of 4f and 3d, the O4,5 pre-peak behavior for the actinides 

is expected to show only a mild dependence on the environment. Indeed, examining the 

O4,5 edge of α-U and UO2 in Ref. 8 shows there is only a slight change in the pre-peak 

structure where a small shoulder appears on the high energy side of the peak at about 98 

eV in UO2.  

Examining the electric-dipole transitions 5d 105f n → 5d 95f n+1 with and without 5d 

core level spin-orbit interaction by means of atomic multiplet calculations reveals further 

insight. The calculated actinide O4,5 absorption spectra in the presence (thick black line) 

and absence (thin red line) of 5d spin-orbit interaction for the ground state configurations 

f 0 to f 9 are shown in Fig. 3. The decay channels that give rise to the broadening are not 
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taken into account, instead all spectral lines are broadened with the same Lorentzian line 

shape of Γ = 0.5 eV. This is narrower than the experimental line width of the giant 

resonance and better shows the shifts in the line intensities. The pre-peak region and giant 

resonance are expected to be below and above ~5 eV, respectively. The results for the 

calculated O4,5 EELS edges of n = 1 (~Th), n = 3 (~U), and n = 5 (~Pu) show that when 

the 5d spin-orbit interaction is switched off, the pre-peak structure vanishes, meaning the 

pre-peaks are a consequence of the perturbation by the 5d spin-orbit interaction, which 

allows transitions with ΔS = 1. For instance, in the transition f 0 → d9 f 1, dipole transitions 

from the initial state 1S0 are allowed only to the final state 1P1 and would result in a single 

resonance peak. Spin-orbit interaction mixes this state with the 3D1 and 3P1 final states. 

These spin triplet states that are causing the pre-peaks are at lower energy compared to 

the singlet state, due to the strong core-valence exchange interaction [16]. While this 

result is clear for 5f 0, it becomes rapidly more complicated for increasing values of the 5f 

count. For less than half-filled shell, with a ground-state of maximum spin S, there are 

always final states with spin S+1, however, this is no longer the case for more than half-

filled shell [25]. Final states of spin S+1 can not be reached in pure LS coupling, since 

dipole-transitions do not change the spin, i.e., only ΔS = 0 transitions are allowed. Spin-

orbit interaction mixes states with ΔS = ±1, and in first-order perturbation theory the 

relative intensity of the pre-peaks will be proportional to (ΔEspin-orbit)2/(2ΔEelectrostatic)2, 

where ΔEspin-orbit and ΔEelectrostatic are the effective splitting due to the spin-orbit and 

electrostatic interaction, respectively. This means the relative intensity of the pre-peak 

structure is a sensitive measure for the strength of the 5d core spin-orbit interaction 

relative to the 5d,5f electrostatic interaction. We find a good agreement between this 
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simple perturbation model and the experimental data. Since the spin-orbit parameter is 

normally close to the calculated value [26], it means that in the metal the electrostatic 

core-valence interaction is not much reduced in size compared to the atomic case. It gives 

further evidence that the intermediate coupling of the atomic model still holds in the 

metallic case. For instance, the intermediate coupling in Pu with 5f 5 is close to jj 

coupling, meaning that almost all electrons occupy the j = 5/2 level. 

As mentioned, for n ≥ 7 the final state has the same spin multiplicity as the 

ground state and there are no forbidden spin transitions. States of the same spin are mixed 

by the 5d spin-orbit interaction, which increases in size over the series (from ζ5d = 2.70 

eV for Th to 4.31 eV for Cm). Despite their complicated nature, examining the calculated 

O4,5 edges for 5f counts from 0 to 9 show that in all cases the pre-peak intensity increases 

with the size of the 5d spin-orbit interaction relative to the electrostatic interactions, while 

the angular quantum number for the 5f states (j = 7/2 or 5/2) strongly influences the 

precise spectral shape of the pre-peak structure and the position of the giant resonance.  

Therefore, the pre-peak intensity and structure is dependent on the spin-orbit interaction 

of both the 5d and 5f states. 

In summary, we have presented EELS spectra and many-electron atomic spectral 

calculations of the O4,5 edge of Th, U, Np, Pu, Am, and Cm metal, where the Np, Am, 

and Cm edges are the first reported experimental O4,5 spectra for metals (the O4,5 edge for 

CmO2 is reported in Ref. 27). An assignment of the actinide O4,5 edge can be made on the 

basis of final state LS coupling, and in doing so it can be shown that the dipole allowed 

transitions are contained within the giant resonance.  The giant resonance splits into three 

transitions that are dipole allowed: ΔS = 0 and ΔL = -1, 0, 1 (ΔL = 1 for 1S ground state), 
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where S and L are the spin and orbital quantum numbers of the ground state. The 5d spin-

orbit interaction acts as a perturbation giving rise to pre-peaks containing ΔS = 1 states. 

These states have a lower energy than the ΔS = 0 states with a separation determined by 

the strong 5d,5f exchange interaction. Although this simple picture begins to break down 

for n > 1 because the ground state and final states are strongly mixed, a global assignment 

can still be made on the basis of the spin states. Although atomic calculations are a 

simplification in the case of solids, they explain the trend along the series in the actinides 

rather well and show that the pre-peak observed in the O4,5 edge is a dipole “forbidden” 

transition. The relative intensity of the pre-peak is a measure for the ratio between the 

spin-orbit interaction and electrostatic interaction, and shows that the intermediate 

coupling of the atomic model also applies to the metals. 

This work performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by 

DE-AC05-00OR22725 with ORNL, operated by UT-Battelle. 
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Figure Captions 
 
 
FIG. 1: The O4,5 EELS edges for the α-phases of Th, U, Np, Pu, Am, and Cm metal. 
Electron diffraction and imaging of the Am sample in the TEM showed that it contained 
heavy amounts of stacking faults, which can be argued produces a combination of α and β 
phases as it is simply a change in the 111 plane stacking.  However, spectra taken from 
areas with varying amounts of stacking faults showed no detectable difference in 
structure. 
 
FIG. 2: Calculated actinide O4,5 absorption spectra for the ground state configurations f 0 
to f 9. The spectra have been convoluted using a Fano line shape broadening with Γ = 2 
eV for the giant resonance and a Lorentzian line shape of Γ = 0.5 eV for the pre-peak 
region. 
 
FIG. 3: (Color online) Calculated actinide O4,5 absorption spectra with (black thick line) 
and without (red thin line) 5d core spin-orbit interaction for the ground state 
configurations f 0 to f 9. Atomic values of the Hartree-Fock Slater parameters were used as 
tabulated in Ref. [13].  The relative energy refers to the zero energy of the average of the 
total final-state configuration. The decay channels that give rise to the broadening were 
not taken into account. All spectral lines were broadened with the same Lorentzian line 
shape of Γ = 0.5 eV. The pre-peak region and giant resonance are expected to be below 
and above ~5 eV, respectively.  
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